Freeway Travel Time Prediction Using Takagi-Sugeno-Kang Fuzzy Neural Network

نویسندگان

  • Yunlong Zhang
  • Hancheng Ge
چکیده

This article presents a Takagi–Sugeno–Kang Fuzzy Neural Network (TSKFNN) approach to predict freeway corridor travel time with an online computing algorithm. TSKFNN, a combination of a Takagi–Sugeno– Kang (TSK) type fuzzy logic system and a neural network, produces strong prediction performance because of its high accuracy and quick convergence. Real world data collected from US-290 in Houston, Texas are used to train and validate the network. The prediction performance of the TSKFNN is investigated with different combinations of traffic count, occupancy, and speed as input options. The comparison between online TSKFNN, offline TSKFNN, the back propagation neural network (BPNN) and the time series model (ARIMA) is made to evaluate the performance of TSKFNN. The results show that using count, speed, and occupancy together as input produces the best TSKFNN predictions. The online TSKFNN outperforms other commonly usedmodels and is a promising tool for reliable travel time prediction on

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link,...

متن کامل

Design of the Models of Neural Networks and the Takagi-Sugeno Fuzzy Inference System for Prediction of the Gross Domestic Product Development

The paper presents the possibility of the design of frontal neural networks and feed-forward neural networks (without pre-processing of inputs time series) with learning algorithms on the basis genetic and eugenic algorithms and Takagi-Sugeno fuzzy inference system (with pre-processing of inputs time series) in predicting of gross domestic product development by designing a prediction models wh...

متن کامل

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

Exponential stability of uncertain Takagi-Sugeno fuzzy Hopfield neural networks with time delays

In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead ...

متن کامل

A New Neurofuzzy Network for Selforganizing Control

In this paper a novel neural fuzzy inference network (NFIN) it is proposed. The NFIN represent a modified Takagi-Sugeno-Kang (TSK) type fuzzy rule based model with neural network learning ability. The rules in the NFIN are created and adapted in an on-line learning algorithm. The structure learning together with the parameter learning forms the learning algorithms for the neural fuzzy network. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp.-Aided Civil and Infrastruct. Engineering

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2013